A finite element approach to study cavitation instabilities in non-linear elastic solids under general loading conditions

نویسندگان

  • Toshio Nakamura
  • Oscar Lopez-Pamies
چکیده

This paper proposes an effective numerical method to study cavitation instabilities in non-linear elastic solids. The basic idea is to examine—by means of a 3D finite element model—the mechanical response under affine boundary conditions of a block of non-linear elastic material that contains a single infinitesimal defect at its center. The occurrence of cavitation is identified as the event when the initially small defect suddenly grows to a much larger size in response to sufficiently large applied loads. While the method is valid more generally, the emphasis here is on solids that are isotropic and defects that are vacuous and initially spherical in shape. As a first application, the proposed approach is utilized to compute the entire onset-of-cavitation surfaces (namely, the set of all critical Cauchy stress states at which cavitation ensues) for a variety of incompressible materials with different convexity properties and growth conditions. For strictly polyconvex materials, it is found that cavitation occurs only for stress states where the three principal Cauchy stresses are tensile and that the required hydrostatic stress component at cavitation increases with increasing shear components. For a class of materials that are not polyconvex, on the other hand and rather counterintuitively, the hydrostatic stress component at cavitation is found to decrease for a range of increasing shear components. The theoretical and practical implications of these results are discussed. & 2011 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite element analysis of elastic-plastic solids under Vickers indentation: surface deformation

Finite element modeling has been used to study the development of surface deformation during indentation with a Vickers indenter. A wide range of materials with different elastic modulus and yield stresses are examined. Results show that in a pyramidal indentation process, for a perfectly plastic material, sinking-in during loading can change to pile-up in unloading. This phenomenon depends on ...

متن کامل

Cavitation in elastomeric solids: I—A defect-growth theory

It is by now well established that loading conditions with sufficiently large triaxialities can induce the sudden appearance of internal cavities within elastomeric (and other soft) solids. The occurrence of such instabilities, commonly referred to as cavitation, can be attributed to the growth of pre-existing defects into finite sizes. This paper introduces a new theory to study the phenomenon...

متن کامل

Failure Prediction during uniaxial Superplastic Tension using Finite Element Method

Superplastic materials show a very high ductility. This is due to both peculiar process conditions and material intrinsic characteristics. However, a number of superplastic materials are subjected to cavitation during superplastic deformation. Evidently, extensive cavitation imposes significant limitations on their commercial application. The deformation and failure of superplastic sheet metals...

متن کامل

Cavitation in rubber: an elastic instability or a fracture phenomenon?

It is by now well established that loading conditions with suffi ciently large triaxialities can induce the suddenappearance of internal cavities within elastomeric (and other soft) solids. The occurrence of such a phenome-non, commonly referred to as cavitation, can be attributed to the growth of pre-existing defects into fi nite sizes.In the fi rst part of this discussion, I w...

متن کامل

Modified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems

In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012